
STRUXXURE®-L Plate Integration

Instrument Options

Nexxt Spine, LLC 14425 Bergen Blvd, Suite B Noblesville, IN 46060 (317) 436-7801 Info@NexxtSpine.com

300X

Interconnected Titanium
PORES

Uncompromising **MACROSURFACE**

7μm Roughened **MICROSURFACE**

5 Pillars of NEXXT MATRIXX® Technology:

- 1. Varied pore array of 300, 500, and 700μm designed to support vascularization and osteogenesis.^{1,4,5}
- 2. 7μm surface roughness designed to increase osteoblast differentiation, production of angiogenic factors, and surface osteointegration.^{2,3,6}
- 3. 75% porous, open titanium architecture developed for greater surface area and nutrient exchange, leading to increased volume for potential bony in-growth.^{4,5,6}
- **4.** Modulus of elasticity engineered to be comparable to PEEK devices leading to a more physiological product.⁶
- 700μm A/P and lateral lattice geometry designed to provide robust radiographic imaging unimpeded by reducing overall titanium material and device density.⁶

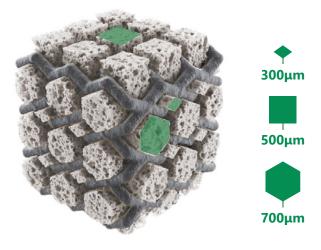


Image represents potential volume for bony in-growth

Studies referenced for the foundational design of NEXXT MATRIXX®

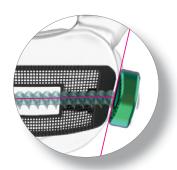
- 1. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.
- 2. Olivares-Navarrete R, Hyzy SL, Slosar PJ et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine. 2015;40(6):399–404.
- 3. Olivares-Navarrete R, Hyzy SL, Gittens RA, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13(11):1563–70.
- 4. Ponader S, von Wilmowsky C, Widenmayer M, et al. In vivo performance of selective electron beam-melted ti-6al-4v structures. J Biomed Mater Res A 2010;92A:56–62
- 5. Li JP, Habibovic P, et al.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810, 2007.
- 6. Data on file at Nexxt Spine, LLC.

Product Brochure

PRODUCT FEATURES

Anatomically matched profile

for appropriate endplate coverage and placement on apophyseal rim for stability.


Bulleted nose design simplifies insertion in collapsed

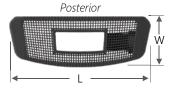
degenerative discs without compromising apophyseal rim.

Ample graft window

balanced with lattice landscape to create environment for bone growth.

Anatomically driven angle

design compatible with STRUXXURE®-L for single position procedural solution.



Product Brochure

CAGE SPECIFICATIONS

Footprints

W: 18mm, 22mm, 26mm* L: 40-60mm (5mm increments)

Heights

8 - 20mm (2mm increments)

Lordosis

0°*, 8°, 14°, and 20°*

* By Request.
Contact Info@NexxtSpine.com
for full SKU offering.

THREE PLATE INSERTION OPTIONS

Plate + Cage Unmated

Plate + Cage Mated

Plate Seperate

Nexxt Spine, LLC 14425 Bergen Blvd, Suite B Noblesville, IN 46060 (317) 436-7801 Info@NexxtSpine.com NexxtSpine.com

For indications, contraindications, warnings, precautions, potential adverse effects and patient counseling information, see the package insert or contact your local representative; visit NexxtSpine.com for additional product information.

All rights reserved. All content herein is protected by copyright, trademarkes and other intellectual property rights owned by Nexxt Spine, LLC and must not be redistributed, duplicated or disclosed, in whole or in part, without the expressed written consend of Nexxt Spine, LLC. This material is intended for healthcare professionals, the Nexxt Spine sales force and authorized representatives. Distribution to any other recipient is prohibited.