


# **Surgical Technique Guide**

# IMPAXX

# **S2AI** Approach

Sacroiliac Joint Fusion Pelvic Fracture Fixation Removal





Nexxt Spine, LLC 14425 Bergen Blvd, Suite B Noblesville, IN 46060 (317) 436-7801 Info@NexxtSpine.com

71-054-02, Rev A





2

# **Table of Contents**

| Instructions For Use                        | 3  |
|---------------------------------------------|----|
| NEXXT MATRIXX® Technology                   | 5  |
| Product Features                            | 6  |
| Product Specifications                      | 7  |
| Surgical Steps                              | 8  |
| 1. Pre-op Planning and Patient Positioning  | 8  |
| 2. Procedure Planning                       | 9  |
| 3. Fluoroscopic angles                      | 10 |
| 4. First Pin Placement                      | 11 |
| 5. Tissue Dilation and Implant Selection    | 12 |
| 6. Implant Corridor Preparation             | 14 |
| 7. Implant Insertion - IMPAXX               | 15 |
| 8. Implant Post Packing                     | 17 |
| 9. Parallel Steinmann Pin Placement         | 18 |
| 9A. Optional Variable Guide - Parallel Pins | 18 |
| 10. Final Fluoroscopic views                | 19 |
| 11. Implant Removal                         | 20 |
| Instrument Part Numbers                     | 21 |
| Implant Part Numbers                        | 24 |

#### INTRODUCTION

The NEXXT MATRIXX® IMPAXX Sacroiliac Joint Stabilization System is intended for sacroiliac joint fixation for conditions including degenerative sacroiliitis and sacroiliac joint disruption. NEXXT MATRIXX® IMPAXX™ is a titanium 3D manufactured and machined cannulated Implant with porous graft windows offering various lengths and diameters to accommodate different patient anatomies.

# **DISCLAIMER**

This document is intended exclusively for physicians and is not intended for laypersons. Information on the product and procedures contained in this document is of a general nature and does not represent and does not constitute medical advice or reccomendations. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examanation and/or advice in whole or in part.



3

#### **Instructions For Use**

#### **GENERAL DESCRIPTION**

NEXXT MATRIXX® is a collection of additively manufactured implants. The SI System includes additively manufactured implants, traditionally manufactured washers, and traditionally machined instruments. The implants are available in an assortment of dimensional combinations to accommodate the individual anatomic and clinical circumstances of each patient.

The basic shapes of the implants are a structural cylinder with ridges to prevent and minimize motion / micromotion of the sacroiliac (SI) joint or a cannulated screw that is either fully threaded or with a lag design provided with optional washers. The implant design allows for fixation, stabilization and fusion fully of the joint or fracture. The washers are intended to add additional support under the head of the screw in situations where bone quality is poor. Each implant comprises an external structural frame having a roughened surface (~7µm). The intervening geometric lattices have 300-700µm pores. The implants can be packed with autograft and allograft materials. NEXXT MATRIXX SI System implants are manufactured from Ti-6Al-4V ELI titanium alloy per ASTM F3001. The washers are manufactured from Ti-6Al-4V ELI titanium alloy per ASTM F136.

#### **INDICATIONS FOR USE**

The NEXXT MATRIXX® SI System is indicated for sacroiliac joint fusion for:

- Sacroiliac joint dysfunction including sacroiliac joint disruption and degenerative sacroiliitis.
- Augmenting immobilization and stabilization of the sacroiliac joint in skeletally mature patients undergoing sacropelvic fixation as part of a lumbar or thoracolumbar fusion. The NEXXT MATRIXX® SI System is also indicated for fracture fixation of the pelvis, including acute, non-acute and non-traumatic fractures.

#### **CONTRAINDICATIONS**

- The SI System contraindications include, but are not limited to: 1. The presence of infection, pregnancy, metabolic disorders of calcified tissues, grossly distorted anatomy, inadequate tissue coverage, any demonstrated allergy or foreign body sensitivity to any of the implant materials, drugs/alcohol abuse, mental illness, general neurological conditions, immunosuppressive disorders, obesity, patients who are unwilling to restrict activities or follow medical advice, and any condition where the implants interfere with anatomical structures or precludes the benefit of spinal surgery.
- 2. Biological factors such as smoking, use of nonsteroidal anti-inflammatory agents, the use of anticoagulants, etc. all have a negative effect on bony union. Contraindications may be relative or absolute and must be carefully weighed against the patient's entire evaluation.
- 3. Bone tumor involving the site of operation.
- 4. Unstable fracture of sacrum and or ilium involving the sacroiliac joint.
- 5. Any condition not described in the Indications for Use.

#### WARNINGS AND PRECAUTIONS

- 1. Women of childbearing potential should be cautioned that vaginal delivery of a fetus may not be advisable following SI joint fusion.
- 2. Individuals with comorbidities may have inferior clinical outcomes.
- 3. The NEXXT MATRIXX® SI System devices should be implanted only by surgeons who are fully experienced in the use of such implants and the required specialized spinal surgery techniques. Prior to use, surgeons should be trained in the surgical procedures recommended for use of these devices.
- 4. The correct selection of the implant is extremely important. The potential for success is increased by the selection of the proper size, shape and design of the implant. Based on the dynamic testing results, the physician should consider the levels of implantation, patient weight, patient activity level, other patient conditions, etc., which may impact on the performance of the device.
- 5. These devices are provided as single use only implants and are not to be reused or reimplanted regardless of an apparent undamaged condition.
- 6. The NEXXT MATRIXX® SI System is used to augment the development of a SI joint or fracture fusion by providing temporary stabilization. If fusion is delayed or does not occur, material fatigue may cause breakage of the implant. Damage to the implant during surgery (i.e., scratches, notches) and loads from weight bearing and activity will affect the implant's longevity.
- 7. The correct handling of the implant is extremely important. Use care in handling and storage of devices. Store the devices in a clean, dry area away from radiation and extreme temperatures and corrosive environments such as moisture, air, etc.
- 8. Use sterile technique when handling the implant and during the procedure to maintain sterility and minimize risk of infection.
- 9. Use of NEXXT MATRIXX SI implants has not been studied in patients with osteopenia / osteoporosis.
- 10. Patient adherence to post-operative instructions may affect outcomes
- 11. In hard bone, adequately prepare the bone channel for implant delivery by drilling and tapping.
- 12. Avoid placement close to other spinopelvic hardware, which may make placement and/or removal difficult.
- 13. When removing an implant, make sure to adequately separate the implant from surrounding bone prior to use of the driver.
- 14. Patients with previous spinal surgery at the operative site(s) to be treated may have different clinical outcomes compared to those without a previous surgery.
- 15. Potential risks identified with the use of this system, which may require additional surgery, include: device component breakage, loss of fixation/loosening, non-union, bony fracture, neurologic, vascular or visceral injury.





4

#### **Instructions For Use**

#### **POTENTIAL ADVERSE EFFECTS**

Potential complications and adverse effects for this system are similar to those of other SI joint fusion and/or pelvic fracturing fixation systems and include, but are not limited to: pseudarthrosis, insufficient bone stock, painful bursa, pressure necrosis, palpable components, early or late loosening of the components; disassembly, bending or breakage of any or all of the components; foreign body (allergic) reaction to the implants; infections possible requiring removal of devices; loss of neurological function, including paralysis, spinal cord impingement or damage, injury to intra-pelvic structures; potential difficulty in delivery fetus vaginally due to device-related restriction of the SI joint stretching; fracture of ilium and/or the sacrum.

#### **MRI SAFETY INFORMATION**

The NEXXT MATRIXX® SI System has not been evaluated for safety in the MR environment. It has not been tested for heating or unwanted movement in the MR environment. The safety of the NEXXT MATRIXX® SI System in the MR environment is unknown. Performing an MR exam on a person who has this medical device may result in injury or device malfunction.

#### **CLEANING AND DECONTAMINATION**

All instruments must first be cleaned before sterilization and introduction into a sterile surgical field. Refer to the Nexxt Spine Reprocessing Instructions for Reusable Instruments document available at www.NexxtSpine.com or by calling 317-436-7801 for the detailed cleaning instructions.

#### **STERILIZATION**

The NEXXT MATRIXX® SI System implants are supplied STERILE. All sterile products are supplied in protective sterile barrier packaging. Do not use sterile products if the packaging has been damaged or previously opened. Do not re-sterilize or autoclave sterile implants.

Non-sterile implants and instruments are supplied clean and NON-STERILE. All non-sterile components must cleaned and sterilized prior to use. Recommended sterilization methods include steam autoclaving after removal of all protective packaging and labeling. Prior to sterilization, verify that all instruments are in their open and unlocked position within the instrument tray(s). AORN recommended practices for in hospital sterilization should be followed. The use of an FDA cleared sterilization wrap is recommended.

Sterilization testing of components has shown the following recommendations for sterilization are effective to an SAL of 10-6:

Method: Steam
Cycle: Prevaccum
Temperature: 270°F (132°C)
Exposure Time: 4 minutes
Drying Time: 60 minutes

#### **PRODUCT COMPLAINTS**

The customer or health care provider should report any dissatisfaction with the product quality, labeling, or performance to Nexxt Spine immediately. Nexxt Spine should be notified immediately of any product malfunction by telephone, fax or written correspondence. When filing a complaint, the name, part number and lot number of the part should be provided along with the name and address of the person filing the complaint.

#### MANUFACTURED BY:

Nexxt Spine, LLC 14425 Bergen Blvd, Suite B Noblesville, Indiana 46060 Telephone: (317) 436-7801 Fax: (317) 245-2518 www.nexxtspine.com



# **NEXXT MATRIXX® Technology**

NEXXT MATRIXX® is a collection of additively manufactured spacers for cervical, lumbar/lumbosacral, and thoracolumbar implantation. Each device comprises an external structural frame with a roughened surface and is shaped as a structural column to provide surgical stabilization of the spine.

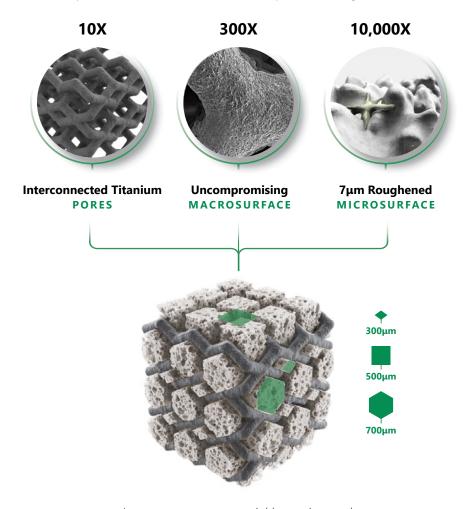



Image represents potential boney ingrowth

#### **TI PORES**

- NEXXT MATRIXX® exhibits three pore sizes of 300, 500, and 700μm.
- Minimized titanium material resulting in a 75% open porous architecture.

#### **MATERIAL**

 NEXXT MATRIXX® implants are manufactured from Titanium Alloy (Ti-6Al-4V) as described by ASTM F3001.

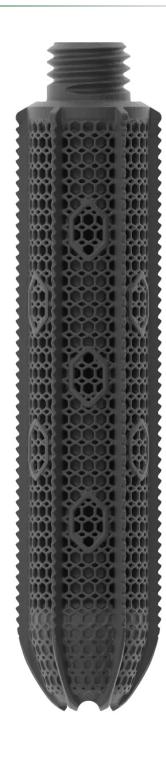
#### **SURFACE**

- Nexxt Spine has developed a proprietary, residuefree, micro-roughening process that creates a highly cohesive 7µm roughened topography.
- Due to the micro-roughened porous structure of the NEXXT MATRIXX® titanium, the implants exhibit up to 4X more surface area for bone apposition and potential bony integration than conventional spinal implants.



# **PRODUCT FEATURES**




Proprietary 3D printed NEXXT MATRIXX® technology designed to be an active participant in the fusion process



Longitudinal features designed to reduce rotation and aid placement in the SI joint



Instrumentation designed to reduce complexity for all steps of operation



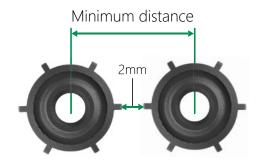


Engineered fenestrations allow for boney ingrowth and targeted allograft flow



3.2mm Steinmann Pin designed to reduce crimping or bending




Aggressive distal tip geometry to aid in advancement



# **PRODUCT SPECIFICATIONS**



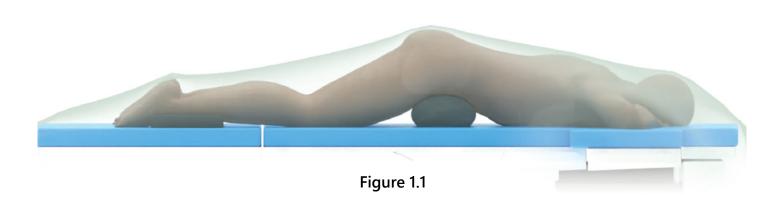
| Nexxt Matrixx IMPAXX Measurements |               |               |
|-----------------------------------|---------------|---------------|
| Part Number                       | 64-MP-10XX-SP | 64-MP-12XX-SP |
| Core Diameter                     | Ø10.1         | Ø12.1         |
| Fin Diameter                      | Ø12           | Ø14           |
| Inner Diameter                    | Ø3.5          | Ø3.5          |
| Lengths                           | 30-75mm       | 30-75mm       |
| Drill Ø                           | Ø7            | Ø9            |



| Minimum               | IMPAXX Diameters |      |
|-----------------------|------------------|------|
| Implant Distance (mm) | Ø10              | Ø12  |
| Ø10                   | 14mm             | 15mm |
| Ø12                   | 15mm             | 16mm |

Minimum distance measurements can be taken with the Variable Pin Guide.

8


# **SURGICAL STEPS**

The surgical technique shown in this document is for illustrative and demonstrative purposes only. The technique actually employed will always depend upon the medical judgment of the surgeon exercised before and during surgery as to the best mode of treatment for each patient. Please see Instructions for Use for the complete list of indications, warnings, precautions, and other important information concerning the use and guidance of the NEXXT MATRIXX® IMPAXX Sacroiliac Joint Stabilization System.

# 1. PRE-OP PLANNING AND PATIENT POSITIONING

Appropriate imaging studies including a CT is recommended for pre-operative planning and abnormal anatomy. Surgeon should review anatomy for the proposed implant placement and trajectory, including defects in the ilium, inadequate boney anatomy in the dorsal iliosacrum.

Alternate trajectories should be considered if dysmorphic anatomy is present in pre-operative imaging.



Patient is placed prone on a flat imaging table and positioned to allow for unrestricted placement and movement of the C-Arm during the surgical procedure. Bolsters, pillows or towel rolls should be used under the chest, waist, as well as lower legs to relax the hip and knees (Figure 1.1).

**NOTE:** Final positioning of the patient should ensure that a neutral position of the SI joint be obtained without inducing extensive flexion or extension of the hips.



#### 2. PROCEDURE PLANNING

## **Open Approach**

Surgical exposure for traditional pedicle screw placement should be extended caudally to expose the dorsal and posterior prominence of the sacrum. Incision should extend at least 1.5cm lateral to the S1 and S2 neuroforamen to ensure that the Implant does not impact the neuro anatomy (Figure 2.1).

**NOTE:** It is recommended to have the posterior fixation bone preparation instruments for preparing the entry portal for the IMPAXX.

**NOTE:** Exposure of the iliac crest is not required unless pathology requires for additional intervention

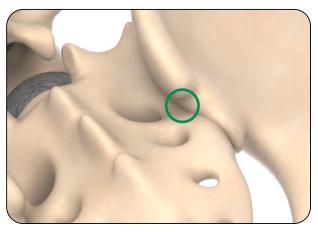



Figure 2.1

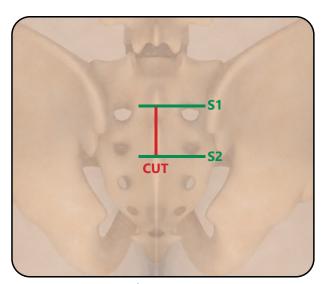
# **MIS Approach**

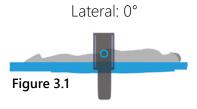
Under fluoroscopic guidance, mark two lines on the skin. First line should extend from the superior edges of the S1 neuroforamen, and second line to the inferior aspect S2 neuroforamen. A midline skin incision starting at the level of the S1 line to the S2 line should be created (Figure 2.2).

Place S2AI Implant using traditional approach depending on pathology and anatomy. To allow for placement of the NEXXT MATRIXX IMPAXX implant, surgeon should consider biasing S2AI screw caudally within the sacrum.

The IMPAXX implant starting point is between the S1 pedicle and S2AI screw, and at the midpoint and lateral border of the S1 neuroforamen.

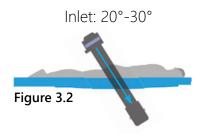
Care should taken to leave 2mm between the IMPAXX implant and any adjacent hardware.





Figure 2.2

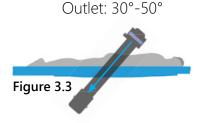


## 3. FLUOROSCOPIC ANGLES


#### Lateral View (Figure 3.1)

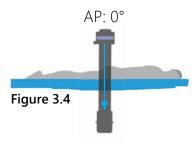
Align view to visualize crisp endplates of the L5-S1 disc space. C-Arm may be required to swivel to achieve the view. Surgeon should confirm that sciatic notches overlap and are in correct alignment and alar lines (iliac cortical densities) are superimposed.




# Inlet View (Figure 3.2)

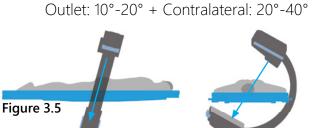
The C-Arm is tilted towards the feet until the dense cortical line of the S1-S2 vestigial disc directly overlies the dense cortical line of the sacral promontory. The orientation of the fluoro should line up with the anterior cortex of the S1 sacral body.




#### Outlet View (Figure 3.3)

The C-Arm is tilted 30 –50 degrees towards the head until the S1 and S2 neuroforamina are clearly visible, and the pubic symphysis is at a level of the S2 foramen.




# AP View (Figure 3.4)

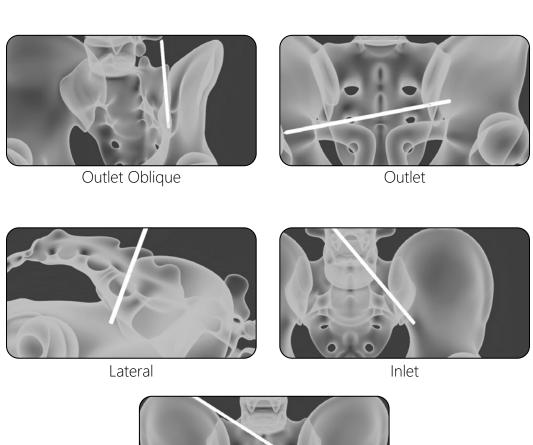
The C-Arm is angled straight up and centered over the sacrum.



# Outlet Oblique View / Teardrop (Figure 3.5)

The C-Arm is positioned in an anterior-to-posterior view with a 10-20 degrees cephalad tilt, and 20-40 degrees of obliquity away from the operative side. This view is utilized for the visualization of the lateral aspect of the S1 neuroforaman and the S1 joint in an open view.




11

#### 4. FIRST PIN PLACEMENT

Remove all preparation instruments and advance the Steinmann Pin down the prepared channel until resistance is felt. Confirm trajectory and placement under fluoroscopic imaging (Figure 4.1). Use of the Radiolucent Forceps can aid in stabilizing the Steinmann Pin during imaging to reduce exposure to the radiation source.

Pin placement confirmation with imaging should include ensuring that the IMPAXX implant will not interact or impinge with S1 and S2AI screws.

**NOTE:** When placing the Steinmann Pin avoid penetrating the neuroforamen. Redirecting the pin while fully seated in bone may bend the Steinmann Pin. If a bend is noted under imaging replace immediately as the IMPAXX Implant and instrument use the Steinmann Pin for final placement.



AP

Figure 4.1



# 5. TISSUE DILATION AND IMPLANT SELECTION

The Small Dilator provides the access corridor for the Small Working Portal used for the IMPAXX implant (Figure 5.1).

The Large Dilator and Large Working Portal are not compatible with the IMPAXX implant.

The Measuring Block has been designed to measure a recommended implant length when used with the Dilators. (Figure 5.2). Place the Measuring Block onto the proximal end of the Small Dilator. Select an appropriate Implant length by reading the proximal location of the Steinmann Pin and the markings on the Measuring Block. If the Steinmann Pin does not directly align with the Measuring Block markings, selecting a shorter Implant length is recommended.

After the measurement is completed, remove the Measuring Block and place the Small Working Portal over the Steinmann pin and Tissue Dilator until the distal tip is contacting the Iliac cortex. Remove the Tissue Dilator while leaving the Steinmann Pin and the Working Portal in place.



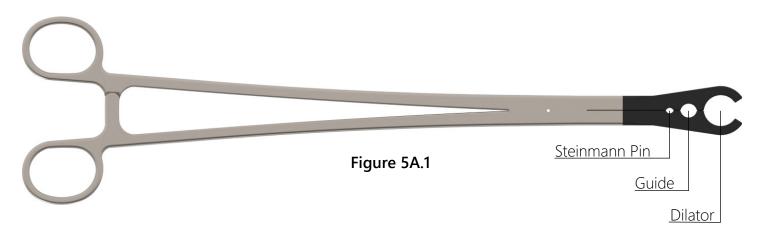

Figure 5.1



Figure 5.2

13

# 5A. RADIOLUCENT FORCEPS (OPTIONAL)



The Radiolucent Forceps have been designed to stabilize the Steinmann Pin, Fixed and Variable Guides, or Dilator during fluoroscopic imaging (Figure 5A.1). The distal clamp of the Radiolucent Forceps allows for visualization of the instrument and pertinent anatomy, while keeping the surgeon's hand at a distance from the radiation source (Figure 5A.2).

The Radiolucent Forceps should be clamped to the Steinmann Pin approximately 2 inches from the proximal portion of the pin to assist with stability.

Forceps placement should allow for perpendicular placement of the Steinmann Pin to the fluoroscopy emitter (Figure 5A.3).



Figure 5A.2

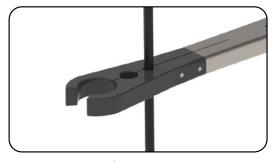
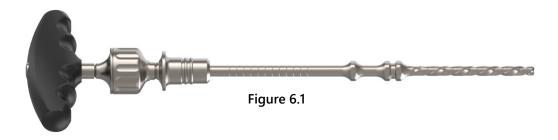



Figure 5A.3

**NOTE:** Avoid trying to alter the course of the Steinmann Pin if it is securely positioned in the bone, as this could result in bending and increase the risk of damage in subsequent procedures.


**NOTE:** Refrain from securing any object with the Radiolucent Forceps that it is not explicitly designed to hold.



# 6. IMPLANT CORRIDOR PREPARATION

Multiple instruments are available for Implant hole preparation which can be utilized based on surgeon preference. The cannulated Drills are undersized by 3mm to the corresponding Implant diameters.

Attach the cannulated Drill to the Ratcheting T-Handle or power drill using the provided Power Adapter (Figure 6.1). Under fluoroscopy, drill to the desired depth.



Drilling should be accomplished under fluoroscopy, ensuring that there is no unwanted Steinmann Pin advancement (Figure 6.2). Drill depth markings can be used to determine final depth and implant selection (Figure 6.3).

**NOTE:** Make sure the flat portion of the Power Adapter attachment fits flush to the walls if using a cordless power drill.

**NOTE:** The Drill flutes are designed to capture the autogenous bone graft for augmenting the implant.

**NOTE:** The Steinmann Pin has the potential to be inadvertently withdrawn while removing the cannulated Drill. Utilize a transfer (Blunt) Steinmann Pin to retain the previously placed pin by placing the transfer Pin through the cannula of the Handle and cannulated Drill while removing the cannulated Drill. If the cannulated Drill appears to be advancing the Trocar Steinmann Pin while drilling the pilot hole, the surgeon can replace the Trocar Steinmann Pin with the Blunt option.



Figure 6.2



Figure 6.3



# 7. IMPLANT INSERTION - IMPAXX

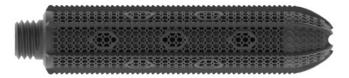



Figure 7.1

Attach the IMPAXX Strike Cap to the IMPAXX Inserter. Select the appropriately sized Implant and secure it to the distal end of the Implant Inserter (Figure 7.2).



Figure 7.2

Depending on surgical preference and tissue coverage, the surgeon may want to countersink the Implant. The Inserter provides the ability to place the Implant from 0mm/flush to countersunk 10mm deep.

Turn the DEPTH knob clockwise until the desired depth is indicated (Figure 7.3).

**NOTE:** Always check the setting before inserting the Implant, as the depth setting may change with cleaning and processing



Figure 7.3



# 7. IMPLANT INSERTION - IMPAXX (CONT.)

Insert Implant and IMPAXX Inserter construct through the Working Portal and over the Steinmann Pin (Figure 7.4). Under fluoroscopic guidance, advance the Implant distally up to the desired position (Figure 7.5).

If post packing is desired, refer to instructions in Step 8: Implant Post Packing. Otherwise, proceed below.

Rotate the IMPAXX Inserter counterclockwise to disengage the IMPAXX Inserter from the implant and remove the Inserter from the Working Portal (Figure 7.6).

**NOTE:** Anatomic curvature of the ilium may cause a portion of the Implants proximal head to appear proud even when the Working Portal is fully seated.. The Oblique Outlet view can be used to very seating depth and position.

**NOTE:** If Inserter is difficult to remove from the Implant, the Release Tool may be utilized by placing the proximal head on the inserter and rotating counter-clockwise.

**NOTE:** Ensure that the Steinmann pin does not advance when inserting the Implant.



Figure 7.4

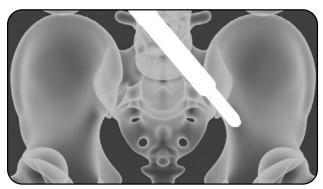



Figure 7.5

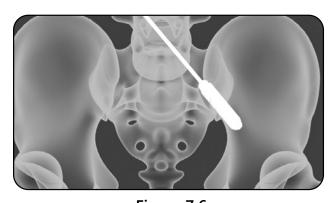



Figure 7.6





17

# 8. IMPLANT POST PACKING

If post-packing the joint and Implant is desired, the IMPAXX Inserter may be utilized as the channel for placement without disengaging the Implant. Remove the IMPAXX Strike Cap and perform either of the following graft packing procedures depending on preference.



1. Autograft or non-syringe-based flowable allograft: Remove the Steinmann Pin. Press on the provided Bone Funnel to the proximal end of the IMPAXX Inserter (Figure 8.1). Using forceps or pickups, transfer the autograft/allograft to the Bone Funnel and tamp the material down the cannula of the IMPAXX Inserter with the Plunger. The Plunger has been designed to extend past the tip of the IMPAXX Inserter.



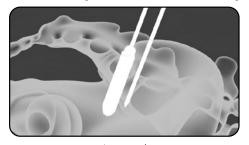
Figure 8.2

2. Syringe-based flowable allograft: Remove the Steinmann Pin. Thread on the Luer Lock tip of the syringe to the proximal end of the IMPAXX Inserter mating feature (Figure 8.2). Depress the Plunger to introduce the graft material down the cannula of the Inserter. Remove the Syringe and tamp the material down the cannula of the Inserter with the Plunger. The Plunger has been designed to extend past the tip of the Inserter.

Repeat for additional implants.

**NOTE:** The Luer taper is a standardized system for making leak-free connections between a male-taper fitting and its mating female part of the instrument. Luer Slip fittings are not recommended for dispensing because they will not attach to the IMPAXX Inserter.

**NOTE:** Do not post-pack until all implants are placed.




# 9. PARALLEL STEINMANN PIN PLACEMENT

The following technique applies to freehand, Fixed, and Variable Guide use for second Steinmann Pin placement. Positioning for the second Steinmann Pin should keep a minimum distance from other implants based on Implant Specifications.

Place the Steinmann Pin cephalad to the previous implant. Spacing between the implants should be based on the implant diameters.

**NOTE:** Adjustments to the trajectory will be made under fluoroscopy (Figure 9.1).



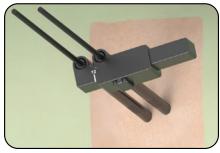




Lateral

Outlet Oblique

Inlet


Figure 9.1

#### 9A. OPTIONAL VARIABLE GUIDE - PARALLEL PINS

The Variable Guide allows for the placement of parallel placed Steinmann Pins in 2mm increments (Figure 9A.1). Refer to Implant Specifications for appropriate and minimum settings for the Variable Guide depending on implant design and diameter.

**NOTE:** Additional spacing may be required between implants or pins if non-parallel placement is required due to anatomy or surgical approach.

To set the proper spacing on the Variable Guide, depress the side button and slide the variable tube to the predetermined spacing. Release the button to secure the Variable Guide. A numerical gage is provided on the proximal face of the Variable Guide for reference (Figure 9A2). The Radiolucent Forceps can be utilized with the Variable Guide during imaging (Figure 9A.3).





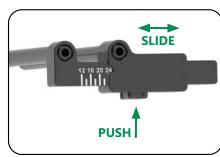



Figure 9A.2

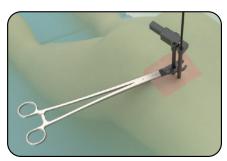
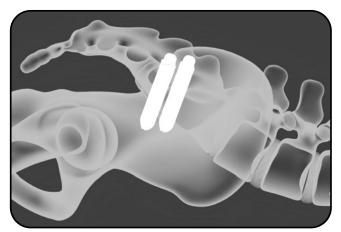
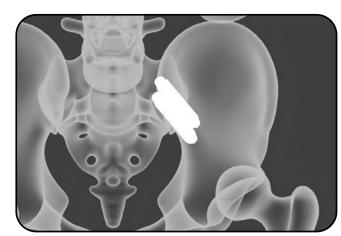
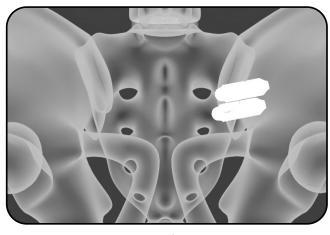



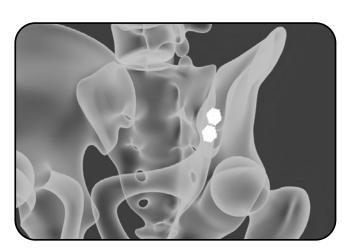

Figure 9A.3




# 10. FINAL FLUOROSCOPIC VIEWS


Always verify Lateral, Inlet, Outlet, and Outlet Oblique views to verify correct implant positioning, wall and foramen integrity, and maintenance of fracture reduction (Figure 10.1).




Lateral



Inlet



Outlet



Outlet Oblique

Figure 10.1



# 11. IMPLANT REMOVAL

Reattachment of the IMPAXX Inserter should be the primary method of Implant removal. Clear tissue as necessary to access the Implant head. If necessary, introduce the Steinmann Pin into the cannulation of the Implant and insert the Dilator, then the Working Portal, to create an operative corridor and protect the soft tissue. Remove the Dilator, leaving the Working Portal and Steinmann Pin.



Figure 11.1

Attach the Mallet Adapter to the IMPAXX Inserter (Figure 11.1). Guide the Inserter assembly over the Steinmann Pin and thread the distal threaded tip onto the Implant. Use the Slotted Mallet over the Mallet Adapter to extract the Implant from the surgical site (Figure 11.2). Fill the Implant site with bone graft to help with hemostasis.

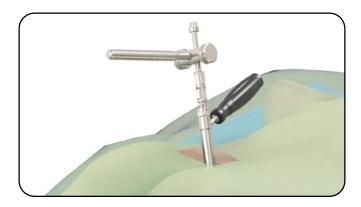
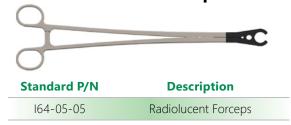



Figure 11.2



# **INSTRUMENT PART NUMBERS**

# **Steinmann Pins**


| Standard P/N | Description              |
|--------------|--------------------------|
| 164-05-01    | 12" Trocar Steinmann Pin |
| 164-05-02    | 9" Blunt Steinmann Pin   |
| 164-05-03    | 12" Blunt Steinmann Pin* |
| 164-05-04    | 20" Blunt Steinmann Pin* |

# **Dilators**



| Standard P/N | Description   |
|--------------|---------------|
| 164-05-10    | Small Dilator |

# **Radiolucent Forceps**



# **IMPAXX** Inserter



| Standard P/N | Description        |
|--------------|--------------------|
| 164-15-01    | IMPAXX SI Inserter |

# **Working Portals**



# **Release Tool**



| Standard P/N | Description  |
|--------------|--------------|
| 164-15-05    | Release Tool |

\*By Request, contact Info@NexxtSpine.com for full SKU offering



# **INSTRUMENT PART NUMBERS (CONT)**







# **Bone Funnel / Plunger**





# **Modular Handle**



# **SQR Ratchet T-Handle, Cannulated**



\*By Request, contact Info@NexxtSpine.com for full SKU offering



164-08-09

Surgical Technique Guide - S2AI

# **INSTRUMENT PART NUMBERS (CONT)**

Ø9mm Drill





# **Mallet Adapter**



# **IMPAXX Strike Cap**



# **Power Adapter**



| Standard P/N |           | Description               |
|--------------|-----------|---------------------------|
|              | 192-10-14 | SQR Power Adapter Ø3.4mm* |

\*By Request, contact Info@NexxtSpine.com for full SKU offering





# **IMPLANT PART NUMBERS**



| Standard P/N  | Description |
|---------------|-------------|
| IMPAXX        | Ø10mm       |
| 64-MP-1030-SP | Ø10x30mm    |
| 64-MP-1035-SP | Ø10x35mm    |
| 64-MP-1040-SP | Ø10x40mm    |
| 64-MP-1045-SP | Ø10x45mm    |
| 64-MP-1050-SP | Ø10x50mm    |
| 64-MP-1055-SP | Ø10x55mm    |
| 64-MP-1060-SP | Ø10x60mm    |
| 64-MP-1065-SP | Ø10x65mm    |
| 64-MP-1070-SP | Ø10x70mm    |
| 64-MP-1075-SP | Ø10x75mm    |



| Standard P/N  | Description |
|---------------|-------------|
| IMPAXX Ø12mm  |             |
| 64-MP-1230-SP | Ø12x30mm    |
| 64-MP-1235-SP | Ø12x35mm    |
| 64-MP-1240-SP | Ø12x40mm    |
| 64-MP-1245-SP | Ø12x45mm    |
| 64-MP-1250-SP | Ø12x50mm    |
| 64-MP-1255-SP | Ø12x55mm    |
| 64-MP-1260-SP | Ø12x60mm    |
| 64-MP-1265-SP | Ø12x65mm    |
| 64-MP-1270-SP | Ø12x70mm    |
| 64-MP-1275-SP | Ø12x75mm    |





Nexxt Spine, LLC 14425 Bergen Blvd, Suite B Noblesville, IN 46060 (317) 436-7801 Info@NexxtSpine.com NexxtSpine.com

For indications, contraindications, warnings, precautions, potential adverse effects and patient counseling information, see the package insert or contact your local representative; visit NexxtSpine.com for additional product information.

All rights reserved. All content herein is protected by copyright, trademarkes and other intellectual property rights owned by Nexxt Spine, LLC and must not be redistributed, duplicated or disclosed, in whole or in part, without the expressed written consend of Nexxt Spine, LLC. This material is intended for healthcare professionals, the Nexxt Spine sales force and authorized representatives. Distribution to any other recipient is prohibited.

71-054-02, Rev A