

Identi

Posterior Curved Porous Ti Interbody System

Redefining the way we approach fusion

IdentiTi™ Posterior Curved Porous Ti Interbody System: Redefining the way we approach fusion

Introducing ATEC's **IdentiTi** Posterior Curved Porous Ti Interbody System leveraging a structure that mimics bone architecture and function. **IdentiTi-PC** is designed for the biological, biomechanical, and imaging characteristics that surgeons seek in a fusion construct.

Proprietary Pore Structure Provides initial implant stability and

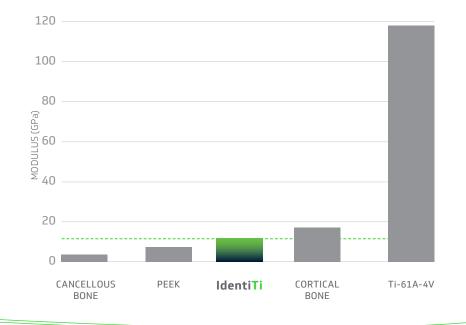
rovides initial implant stability and facilitates surface adhesion

Fully Interconnected Porosity

Designed to mimic the structure of cancellous bone

Manufacturing Excellence and Quality Processing

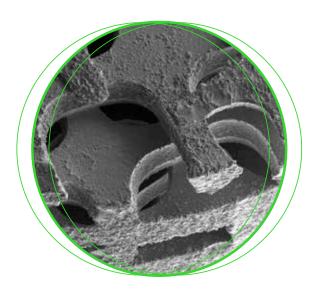
IdentiTi implants are made using a subtractive rather than additive manufacturing process that creates consistent and reproducible interconnected pores across the **IdentiTi** family.

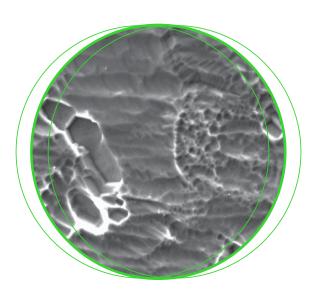

IdentiTi[™] **Implant Porosity**

IdentiTi implants, because of their porosity, have a surface roughness that enhances initial stability and an architecture designed for long-term stability.

Characteristic	Feature	Potential Benefit
Material	Commercially pure titanium (ASTM F67, Grade 2)	Biocompatible, bone-friendlyClinically proven in orthopaedic / dental industries
Porosity	58.8% through entire implant	Enhances intra-op and post-op imaging characteristicsLarge volume for bone fusion
Pore size	523 μm (434-660 μm)	Consistent pore sizes designed to mimic cancellous bone
Pore interconnectivity	229 µm	Interconnected architecture allows for surface adhesion
Macro-scale roughness (coefficient of friction)	1.07	High macro-roughness increases initial stability
Effective modulus	8.8 GPa	Low modulus Flexible structure

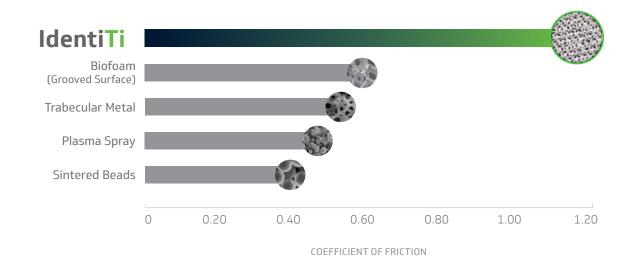
IdentiTi porous titanium has a stiffness similar to bone.¹





Initial Implant Stability: Surface Roughness

ATEC's **IdentiTi** Porous Ti implants have a material topography with an increased coefficient of friction that improves initial mechanical stability and facilitates bone apposition.²



10,000X MAGNIFICATION

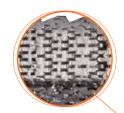
The coefficient of friction of **IdentiTi** is significantly greater than the reported values of competing materials when tested against simulated bone.²

Bone In-Growth Assessment in a Canine Model

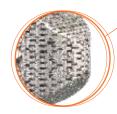
Bone in-growth was demonstrated in an animal model using qualitative assessment of trabecular and cortical bone growth into cylindrical pins of the porous titanium material.³

90-100% Cortical bone in-growth

75%
Trabecular bone in-growth at 6 and 24 weeks³



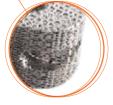
PORCINE CALVARIA PIN REMOVAL STUDY — 5 WEEKS³


IdentiTi[™]-PC Porous Ti Interbody System

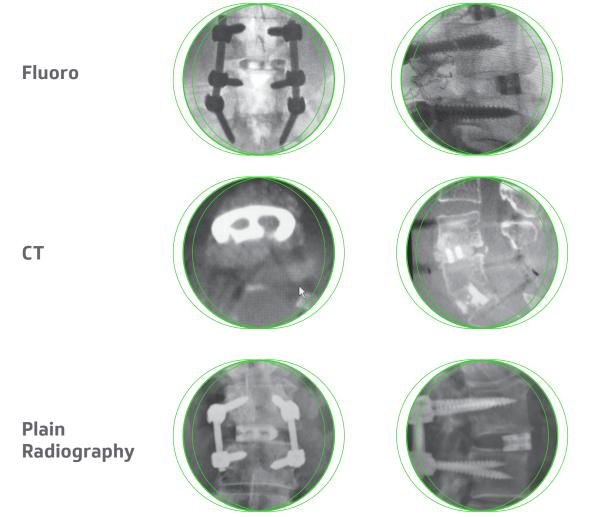

Directional anti-migration teeth on a porous material combine for smooth implant insertion with excellent resistance to back-out

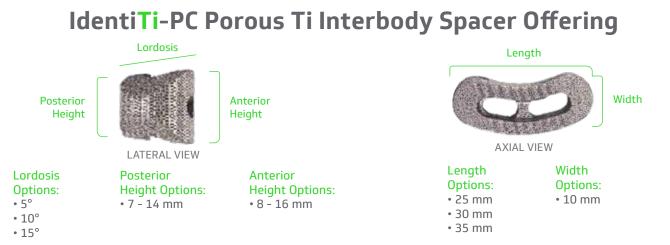
Curvature matches
apophyseal ring to create
more natural surface contact

Self-distracting bulleted nose design for ease of insertion


Designed to optimize endplate contact and graft volume

Rounded edge protects soft tissue/nerve roots during insertion


Graft windows allow for easy visualization of final placement



Threads provide both
easy attachment and retention
to the inserter

IdentiTi[™]-PC Porous Ti Interbody Imaging

IdentiTi Implants are 60% porous, reducing the density of material, enhancing intra-op and post-op imaging.

IdentiTi

Posterior Curved Porous Ti Interbody System

For more information, visit: ATECspine.com
- or -

contact customer service at: 800.922.1356

References:

Data on File; ATEC Spine:

- 1. LIT-84898A
- 2. LIT-84895A
- 3. LIT-84894A

