SDIFE® 3D Printed Trabecular PEEK™ with HAFUSE® Posterior Lumbar Interbody Fusion System

Inspire® 3D Printed Trabecular PEEK™ with HAFUSE® Posterior Lumbar Interbody Fusion System

The Inspire Posterior Lumbar (PLIF) Interbody Fusion System is indicated for use in skeletally mature patients with degenerative disc disease at one or two contiguous levels from L2 - S1. The implants are manufactured utilizing the Evonik VESTAKEEP® i4 3DF PEEK high-performance polymer on a proprietary, patented Fused Filament Fabrication 3D printer. Application of the patented HAFUSE to this engineered PEEK structure presents a hydrophilic surface, which can lead to better bone apposition and enhanced Osseointegration, as observed in our animal study.¹

System Features

- Excellent fusion visualization
- 100% fully Interconnected porosity
- Pore size distribution between 100 600 microns designed to promote Osteoconduction^{2,3,4}
- ▶ HA is bonded to 100% of the implant surface throughout the entire structure
- Titanium radiopaque markers to enhance visibility and placement
- Comprehensive discectomy instruments
- Robust Inserter engagement features to facilitate implant insertion
- Convex design offers a more accurate fit to the patients anatomy
- Simple instrumentation for reliable implant placement

Inspire PLIF Interbodies			
Catalog Number	Description (W x D x H)	Catalog Number	Description (W \times D \times H)
C334-220906-0	22 x 09 x 06mm, 0°	C334-260906-0	22 x 09 x 06mm, 0°
C334-220907-0	22 x 09 x 07mm, 0°	C334-260907-0	22 x 09 x 07mm, 0°
C334-220908-0	22 x 09 x 08mm, 0°	C334-260908-0	22 x 09 x 08mm, 0°
C334-220909-0	22 x 09 x 09mm, 0°	C334-260909-0	22 x 09 x 09mm, 0°
C334-220910-0	22 x 09 x 10mm, 0°	C334-260910-0	22 x 09 x 10mm, 0°
C334-220911-0	22 x 09 x 11mm, 0°	C334-260911-0	22 x 09 x 11mm, 0°
C334-220912-0	22 x 09 x 12mm, 0°	C334-260912-0	22 x 09 x 12mm, 0°
C334-220913-0	22 x 09 x 13mm, 0°	C334-260913-0	22 x 09 x 13mm, 0°
C334-220914-0	22 x 09 x 14mm, 0°	C334-260914-0	22 x 09 x 14mm, 0°
C334-220915-0	22 x 09 x 15mm, 0°	C334-260915-0	22 x 09 x 15mm, 0°
C334-220916-0	22 x 09 x 16mm, 0°	C334-260916-0	22 x 09 x 16mm, 0°

For more information or to place an order call: 877.9CURITEVA, email: customersupport@curiteva.com or visit www.curiteva.com

Products patented and/or patent pending.

All products are not currently available in all markets.

References:

- ¹ Data is derived from ovine studies. Please note in vitro and in vivo testing may not be representative of clinical experience.
- ² Vijayavenkataraman, S., Kuan, L.Y., Lu, W.F., 2020. 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Mater. Des. 108602.
- ³ Liu, F., Mao, Z., Zhang, P., Zhang, D.Z., Jiang, J., Ma, Z., 2018b. Functionally graded porous scaffolds in multiple patterns: new design method, physical and mechanical properties. Mater. Des. 160, 849–860.
- ⁴ Feng, B., Jinkang, Z., Zhen, W., Jianxi, L., Jiang, C., Jian, L., Guolin, M., Xin, D., 2011. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed. Mater. 6 (1), 015007.
- *Additional references available by request